skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simpson, Isla_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Canonical understanding based on general circulation models (GCMs) is that the atmospheric circulation response to midlatitude sea‐surface temperature (SST) anomalies is weak compared to the larger influence of tropical SST anomalies. However, the ∼100‐km horizontal resolution of modern GCMs is too coarse to resolve strong updrafts within weather fronts, which could provide a pathway for surface anomalies to be communicated aloft. Here, we investigate the large‐scale atmospheric circulation response to idealized Gulf Stream SST anomalies in Community Atmosphere Model (CAM6) simulations with 14‐km regional grid refinement over the North Atlantic, and compare it to the responses in simulations with 28‐km regional refinement and uniform 111‐km resolution. The highest resolution simulations show a large positive response of the wintertime North Atlantic Oscillation (NAO) to positive SST anomalies in the Gulf Stream, a 0.4‐standard‐deviation anomaly in the seasonal‐mean NAO for 2°C SST anomalies. The lower‐resolution simulations show a weaker response with a different spatial structure. The enhanced large‐scale circulation response results from an increase in resolved vertical motions with resolution and an associated increase in the influence of SST anomalies on transient‐eddy heat and momentum fluxes in the free troposphere. In response to positive SST anomalies, these processes lead to a stronger and less variable North Atlantic jet, as is characteristic of positive NAO anomalies. Our results suggest that the atmosphere responds differently to midlatitude SST anomalies in higher‐resolution models and that regional refinement in key regions offers a potential pathway to improve multi‐year regional climate predictions based on midlatitude SSTs. 
    more » « less
  2. Abstract Climate change projections show amplified warming associated with dry conditions over tropical land. We compare two perspectives explaining this amplified warming: one based on tropical atmospheric dynamics and the other focusing on soil moisture and surface fluxes. We first compare the full spatiotemporal distribution of changes in key variables in the two perspectives under a quadrupling of CO2using daily output from the CMIP6 simulations. Both perspectives center around the partitioning of the total energy/energy flux into the temperature and humidity components. We examine the contribution of this temperature/humidity partitioning in the base climate and its change under warming to rising temperatures by deriving a diagnostic linearized perturbation model that relates the magnitude of warming to 1) changes in the total energy/energy flux, 2) the base-climate temperature/humidity partitioning, and 3) changes in the partitioning under warming. We show that the spatiotemporal structure of warming in CMIP6 models is well predicted by the inverse of the base-climate partition factor, which we term the base-climate sensitivity: conditions that are drier in the base climate have a higher base-climate sensitivity and experience more warming. On top of this relationship, changes in the partition factor under intermediate (between wet and dry) surface conditions further enhance or dampen the warming. We discuss the mechanistic link between the two perspectives by illustrating the strong relationships between lower-tropospheric temperature lapse rates, a key variable for the atmospheric perspective, and surface fluxes, a key component of the land surface perspective. Significance StatementUnderstanding what conditions give rise to the largest magnitude of warming in response to rising CO2concentrations is not only scientifically important but also critical from a climate impact standpoint. Two main perspectives, one focusing on atmospheric dynamics and the other focusing on land surface processes, have been proposed to explain the stronger warming associated with drier conditions in the tropics. Here, we compare and contrast these two perspectives. We demonstrate that amplified warming in CMIP6 models can largely be predicted from base-climate dryness alone in both perspectives but is further modified based on changes in the partitioning of energy between temperature and moisture. We highlight the spatiotemporal conditions where assumptions in the two perspectives hold and where deviations occur within CMIP6 climate models. 
    more » « less
  3. Abstract Change over recent decades in the world's five Mediterranean Climate Regions (MCRs) of quantities of relevance to water resources, ecosystems and fire are examined for all seasons and placed in the context of changes in large‐scale circulation. Near‐term future projections are also presented. It is concluded that, based upon agreement between observational data sets and modelling frameworks, there is strong evidence of radiatively‐driven drying of the Chilean MCR in all seasons and southwest Australia in winter. Observed drying trends in California in fall, southwest southern Africa in fall, the Pacific Northwest in summer and the Mediterranean in summer agree with radiatively‐forced models but are not reproduced in a model that also includes historical sea surface temperature (SST) forcing, raising doubt about the human‐origin of these trends. Observed drying in the Mediterranean in winter is stronger than can be accounted for by radiative forcing alone and is also outside the range of the SST‐forced ensemble. It is shown that near surface vapour pressure deficit (VPD) is increasing almost everywhere but that, surprisingly, this is contributed to in the Southern Hemisphere subtropics to mid‐latitudes by a decline in low‐level specific humidity. The Southern Hemisphere drying, in terms of precipitation and specific humidity, is related to a poleward shift and strengthening of the westerlies with eddy‐driven subsidence on the equatorward side. Model projections indicate continued drying of Southern Hemisphere MCRs in winter and spring, despite ozone recovery and year‐round drying in the Mediterranean. Projections for the North American MCR are uncertain, with a large contribution from internal variability, with the exception of drying in the Pacific Northwest in summer. Overall the results indicate continued aridification of MCRs other than in North America with important implications for water resources, agriculture and ecosystems. 
    more » « less
  4. Abstract To improve understanding of ocean processes impacting monthly sea surface temperature (SST) variability, we analyze a Community Earth System Model, version 2, hierarchy in which models vary only in their degree of ocean complexity. The most realistic ocean is a dynamical ocean model, as part of a fully coupled model (FCM). The next most realistic ocean, from a mechanically decoupled model (MDM), is like the FCM but excludes anomalous wind stress–driven ocean variability. The simplest ocean is a slab ocean model (SOM). Inclusion of a buoyancy coupled dynamic ocean as in the MDM, which includes temperature advection and vertical mixing absent in the SOM, leads to dampening of SST variance everywhere and reduced persistence of SST anomalies in the high latitudes and equatorial Pacific compared to the SOM. Inclusion of anomalous wind stress–driven ocean dynamics as in the FCM leads to higher SST variance and longer persistence time scales in most regions compared to the MDM. The net role of the dynamic ocean, as an overall dampener or amplifier of anomalous SST variance and persistence, is regionally dependent. Notably, we find that efforts to reduce the complexity of the ocean models in the SOM and MDM configurations result in changes in the magnitude of the thermodynamic forcing of SST variability compared to the FCM. These changes, in part, stem from differences in the seasonally varying mixed layer depth and should be considered when attempting to quantify the relative contribution of certain ocean mechanisms to differences in SST variability between the models. 
    more » « less